Critical behavior of hierarchical Ising models.

نویسندگان

  • Iglói
  • Lajkó
  • Szalma
چکیده

We consider the critical behavior of two-dimensional layered Ising models where the exchange couplings between neighboring layers follow hierarchical sequences. The perturbation caused by the non-periodicity could be irrelevant, relevant or marginal. For marginal sequences we have performed a detailed study, which involved analytical and numerical calculations of different surface and bulk critical quantities in the two-dimensional classical as well as in the one-dimensional quantum version of the model. The critical exponents are found to vary continuously with the strength of the modulation, while close to the critical point the system is essentially anisotropic: the correlation length is diverging with different exponents along and perpendicular to the layers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Critical behavior of the Ising model on a hierarchical lattice with aperiodic interactions

We write exact renormalization-group recursion relations for nearest-neighbor ferromagnetic Ising models on Migdal-Kadanoff hierarchical lattices with a distribution of aperiodic exchange interactions according to a class of substitutional sequences. For small geometric fluctuations, the critical behavior is unchanged with respect to the uniform case. For large fluctuations, as in the case of t...

متن کامل

The Elusive Asymptotic Behavior of the High - Temperature Expansion of the Hierarchical Ising Model

We present a differential formulation of the recursion formula of the hierarchical model which provides a recursive method of calculation for the high-temperature expansion. We calculate the first 30 coefficients of the high temperature expansion of the magnetic susceptibility of the Ising hierarchical model with 12 significant digits. We study the departure from the approximation which consist...

متن کامل

Magnetic Properties and Phase Transitions in a Spin-1 Random Transverse Ising Model on Simple Cubic Lattice

Within the effective-field theory with correlations (EFT), a transverse random field spin-1 Ising model on the simple cubic (z=6) lattice is studied. The phase diagrams, the behavior of critical points, transverse magnetization,  internal energy, magnetic specific heat are obtained numerically and discussed for different values of p the concentration of the random transverse field.

متن کامل

بسط دمای بالای پذیرفتاری مدل آیزینگ شبکه کاگومه با برهم‌کنش نزدیکترین همسایه‌ها

 The Ising model is one of the simplest models describing the interacting particles. In this work, we calculate the high temperature series expansions of zero field susceptibility of ising model with ferromagnetic, antiferromagnetic and one antiferromagnetic interactions on two dimensional kagome lattice. Using the Pade´ approximation, we calculate the susceptibility of critical exponent of fer...

متن کامل

Field behavior of an Ising model with aperiodic interactions

We derive exact renormalization-group recursion relations for an Ising model, in the presence of external fields, with ferromagnetic nearest-neighbor interactions on Migdal-Kadanoff hierarchical lattices. We consider layered distributions of aperiodic exchange interactions, according to a class of two-letter substitutional sequences. For irrelevant geometric fluctuations, the recursion relation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. B, Condensed matter

دوره 52 10  شماره 

صفحات  -

تاریخ انتشار 1995